Астрофорум

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Астрофорум » Прочее » Запутанные во времени фотоны


Запутанные во времени фотоны

Сообщений 21 страница 30 из 42

21

Ковырялся в инете почти два часа, понял только одно, квантовый компьютер даёт преимущество при решении задач методом перебора данных.
Логические задачи или никак или гораздо медленнее своих обычных собратьев. Ну очень "узкоспециализированный" комп получается.

0

22

Кое-что накопал. Статьи громоздкие. Если кому интересно:
http://compress.ru/archive/cp/2007/5/15/
Смотрим разделы: Структура квантового компьютера, Практическое применение квантовых компьютеров
Инфа правда 2007 г, но все же, кое что по принципам работы на программно аппаратном уровне в разделе "Структура квантового компьютера" имеется.
В Википедии: https://ru.wikipedia.org/wiki/Квантовый_алгоритм
16:29, 20 августа 2012
Американские физики реализовали квантовый алгоритм Шора
http://lenta.ru/news/2012/08/20/quantum/

0

23

15 января 201509:25 Иван Загорский
Разработан прототип квантового жесткого диска

Запись квантовой информации лазером на ионы европия, встроенные в кристалл
(иллюстрация ANU).

6116270
Люди начали шифровать секретную информацию задолго до появления первых компьютеров. Но и тогда, и сегодня, в эпоху глобальной коммуникации, практически любой сигнал можно перехватить и раскодировать. Именно поэтому большие надежды возлагаются на сверхбезопасную квантовую передачу данных, которая со временем может прийти на смену современному Интернету.
Квантовые коммуникации являются наиболее многообещающими в силу того, что они работают по принципу квантовой запутанности, то есть сообщение возникает одновременно в двух местах со сменой квантового состояния кубита и передачи сигнала, как таковой, не происходит вовсе. Такие технологии позволяют прочесть сообщение только конечному получателю, а любая попытка перехвата приводит к потере информации.
В ходе первых экспериментов защищённый квантовый сигнал уже удаётся передавать на расстоянии около 100 километров, но дальше начинаются проблемы. В обычных электронных сетях сигнал, следуя из одной точки в другую, проходит через серию усилителей, установленных по всему маршруту. Но в мире квантовой коммуникации такой принцип не действует.
Благодаря всё тому же явлению квантовой запутанности любая попытка усилить сигнал в лучшем случае приведёт к добавлению сильного шума, а скорее всего, полностью его разрушит. Поэтому квантовая информация должна путешествовать между отдельными узлами сети с остановками. По непрерывным оптическим путям сигнал передаётся из одного промежуточного пункта в другой, где его требуется сохранить в виде материальных квантовых битов, то есть, кубитов.
В итоге, чтобы послать зашифрованный сигнал даже на несколько сотен километров требуется сложная система промежуточных узлов памяти, что делает такие сети невероятно сложными и дорогими. Поэтому для начала гораздо проще кодировать данные с помощью кубитов на физическом носителе и транспортировать его из одной точки мира в другую, как обычную посылку. Правда, первые прототипы таких квантовых "жёстких дисков" могли хранить данные лишь доли секунды, а за это время далеко не уедешь.

Теперь же учёные Австралийского национального университета (ANU) и Университета Онтаго (University of Otago) создали устройство, способное хранить квантовую информацию на протяжении шести часов.
С помощью лазера команда устанавливала тот или иной спин ядер редкоземельного элемента европия, встроенного в кристаллы ортосиликата итрия. После этого кристаллы охлаждали до температуры -271°C и окружали комбинацией из фиксированного и колеблющегося магнитного поля.
Эти два поля изолировали спины ядер европия и предотвращали утечку информации. По сути, устройство представляет собой первый прототип оптического накопителя для частиц, находящихся в состоянии квантовой запутанности. В перспективе его можно будет перенести в другое место, подключить к новой изолированной сети и продолжить передачу сигнала, зашифрованного в спине ядер.
"Наши результаты позволяют переосмыслить то, каким способом лучше распространять квантовые данные", — сообщает ведущий автор исследования Маньцзинь Чжун (Manjin Zhong) в пресс-релизе.
Правда пока неясно, насколько сложной и портативной будет такая "квантовая флешка", работающая при температуре, близкой к абсолютному нулю. Стоит отметить, что учёные с осторожностью смотрят на перспективы своего изобретения. Они отмечают, что всегда следует внимательно проверять, соответствуют ли теоретические расчёты практическим показателям, ведь раньше никто не работал со столь долгим хранением квантовой информацией. Но возможно, новое исследование поможет совершить прорыв в перспективной области.

http://www.vesti.ru/doc.html?id=2277155&cid=2161

0

24

Ясеп пень! Никто не работал, потому-что впервые! И то, что не кричат на каждом углу "Сенсация! Сенсация!!!", говорит о серьёзности подхода к реализации проводимых работ. Работайте дальше, пусть не квантовый компьютер, но что-то ещё полезное выйдет.

0

25

dilettant написал(а):

Ясеп пень! Никто не работал, потому-что впервые! И то, что не кричат на каждом углу "Сенсация! Сенсация!!!", говорит о серьёзности подхода к реализации проводимых работ. Работайте дальше, пусть не квантовый компьютер, но что-то ещё полезное выйдет.

Полезное похоже вышло.
Ученые: кольцо света поможет создать чип для квантовой шифровки данных
17:0126.01.20158211
Физики создали особое устройство, "кольцо света", которое способно удерживать частицы света внутри себя и тем самым позволяет интегрировать системы квантовой шифровки данных в классические компьютерные чипы, говорится в статье, опубликованной в журнале Optica.
Так художник представил себе кольцо света в системе защищенной связи
© Università degli Studi di Pavia
МОСКВА, 26 янв — РИА Новости. Физики создали особое устройство, "кольцо света", которое способно удерживать частицы света внутри себя и тем самым позволяет интегрировать системы квантовой шифровки данных в классические компьютерные чипы, говорится в статье, опубликованной в журнале Optica.

"В последние годы было создано множество кремниевых устройств, которые умеют фильтровать и перенаправлять световые сигналы, и большая часть из них сегодня используется в телекоммуникационной сфере. Наши микрокольца можно уже сегодня использовать вместе с такими приборами, что дает нам возможность использовать феномен квантового запутывания внутри электронных чипов", — заявил Даниель Баджони из Павийского университета (Италия).

С начала 20 века математики неотрывно работают над созданием все более сложных методик шифрации и безопасной передачи информации. Все они обладают двумя критическими недостатками — их можно взломать при приложении достаточных вычислительных мощностей, или же информацию можно извлечь, "подслушав" ее передачу по каналу данных. Так называемые квантовые сети решают обе этих проблемы за счет того, что принцип неопределенности Гейзенберга, краеугольный камень квантовой физики, не позволяет "третьему лишнему" считывать информацию с канала данных и подбирать к ней ключ, не нарушая ее передачу.

Как отмечает Баджони, главной проблемой в интеграции подобных квантовых систем защиты информации в современные телекоммуникационные сети было то, что инженерам никак не удавалось уменьшить до нужных размеров их главный компонент — источник "запутанных" на квантовом уровне фотонов, которые используются для передачи информации в защищенном виде. По этой причине все существующие системы квантовой шифровки так и не покинули стен лабораторий.

По словам физика, ему и его научному коллективу удалось решить эту проблему при помощи устройства, которое они называют "кольцом света". Оно представляет собой микрокольцевой резонатор — полую петлю в толще кремния, стенки которой отражают свет. Авторы статьи обработали их поверхность таким образом, что они начали не просто усиливать световой поток, но и вырабатывать пары "спутанных" фотонов.

Небольшие размеры таких резонаторов — всего 20 микрон — и их полная совместимость с современными технологиями изготовления микрочипов и оптоволоконными системами передачи данных позволяет уже сейчас использовать их в качестве основы для защищенных сетей, заключают Баджони и его коллеги.

РИА Новости http://ria.ru/science/20150126/10443711 … z3PwKafb8V

0

26

Ученые выяснили, что скорость света в вакууме является далеко не постоянной величиной

http://www.dailytechinfo.org/uploads/images14/20150118_1_1.jpg
Известно, что свет не всегда движется со скоростью света, его скорость падает при движении в воде, стекле и в других прозрачных материалах. Но новые эксперименты, проведенные учеными из университета Рочестера (University of Rochester) и университета Глазго (University of Glasgow), демонстрируют то, что фокусировка лучей или вмешательство в структуру импульсов света позволяет уменьшить скорость распространения света даже в условиях вакуума.

Скорость света в вакууме, обозначаемая литерой "c", является одной из самых главных физических констант, на которой базируется большая часть современной физики, включая и теорию относительности Эйнштейна. В прошлое время множество усилий было направлено на измерение точного значения скорости света, но сейчас достоверно известно, что скорость света в вакууме равна 299 792 458 метров в секунду. И даже длина нынешнего эталона расстояния, метра, была определена с использованием значения скорости света.

Но новые экспериментальные данные указывают на то, что скорость света в вакууме не может считаться константой. Значение константы "c" после этого можно рассматривать только в качестве верхнего предела скорости распространения света.

Группа исследователей, возглавляемая Майлзом Пэдджеттом (Miles Padgett), ученым в области оптической физики из университета Глазго, продемонстрировала эффект замедления скорости света на примере двух фотонов, которые были идентичны друг другу, за исключением их структуры. Хотя этот эффект практически не заметен в повседневной жизни и не имеет существенного влияния на множество технологий, его наличие выдвигает на первый план ранее неизвестные фундаментальные тонкости поведения света.

Демонстрация эффекта замедления скорости света была проведена при помощи оптического устройства, синхронно излучающего пары фотонов. Один из фотонов был направлен в оптическое волокно, а второй пропускался через несколько оптических устройств, которые производили изменения его волновой структуры. Оптическое волокно выполняло роль линии задержки для первого фотона, а его длина была такой, что вышедший из него фотон снова двигался рядом с фотоном, претерпевшим структурные изменения.

Если бы волновая структура фотона не влияла бы на скорость его движения в вакууме, то оба фотона поразили поверхность специального быстродействующего светочувствительного датчика в один и тот же момент времени. Но, проведенные измерения показали, что фотон света, претерпевший структурные изменения, отстал от оригинального фотона на несколько микрометров на одном метре дистанции.

"Я не удивлен тем, что данный эффект существует" - рассказывает Роберт Бойд (Robert Boyd), ученый-физик из университета Рочестера, - "Удивительно то, что этот эффект является настолько сильным и его никто не заметил до этого времени".

"Полученные нами результаты не затронут областей науки и техники, в которых используется постоянный свет от лазеров или других источников" - рассказывает Майлз Пэдджетт, - "Но вот физики, которые в своей работе используют сверхкороткие импульсы, будут вынуждены учитывать вероятность изменения скорости света в своих исследованиях".

http://www.dailytechinfo.org/news/6656- … hinoy.html

0

27

Квантовый компьютер. Продолжение.

Физики: квантовые компьютеры оказались медленнее, чем ожидалось
16:08  13.04.2015
Физики выяснили, что квантовые компьютеры будут медленнее, чем считают сегодня некоторые физики, и будут медленнее расти в производительности из-за задержек в передаче информации между их ячейками памяти.
http://cdn2.img22.ria.ru/images/98961/26/989612643.jpg
http://cdn4.img22.ria.ru/images/98124/83/981248325.jpg

Чип процессора 128-кубитного квантового компьютера, произведенный компанией D-Wave Systems Inc.
© D-Wave Systems, Inc.
МОСКВА, 13 апр – РИА Новости. Добавление дополнительных вычислительных узлов в квантовый компьютер будет налагать заметно больше издержек и задержек в передаче информации, чем считалось ранее, что устанавливает более низкие лимиты на их пиковую производительность, заявляют физики в статье, опубликованной в журнале Physics Review Letters.

"Предыдущие расчеты показывали, что квантовые компьютеры могут работать очень быстро, гораздо быстрее, чем кто-либо когда мог себе представить. Но за последние 10 лет никому так и не удалось найти свидетельств того, что информация может путешествовать с подобной скоростью", — заявил Майкл Фосс-Фейг (Michael Foss-Feigg) из Национального института технологий и стандартов США в Гейтерсбурге.

Главным отличием квантовых компьютеров от обычных вычислительных машин является то, что их ячейки памяти – так называемые кубиты – являются одновременно и вычислительными устройствами. По этой причине, их мощность ограничивается двумя факторами – числом кубитов и временными издержками на их синхронизацию и обмен информацией.

Фосс-Фейг и его коллеги попытались определить, насколько быстро кубиты могут обмениваться информацией, получать ее извне или передавать во "внешний мир". Как показывали предыдущие расчеты, издержки на добавление новых вычислительных узлов в квантовый компьютер были относительно невелики и росли медленно по мере увеличения сложности его конструкции. Это давало надежду на быстрое создание подобных устройств.

Эти радужные планы основывались на одном простом трюке – физики считали, что изменение состояния кубита будет влиять не только на его соседей, но и на более далекие ячейки информации. Благодаря этому информация должна была распространяться по системе экспоненциально, а не линейно, что должно было экономить огромную массу времени и открывает дорогу для практически неограниченной вычислительной мощности.

Как показывает практика последних 10 лет в деле разработки квантовых компьютеров и расчеты Фосс-Фейг и его коллег, на самом деле все обстоит не так.

Кубиты ведут себя подобным образом лишь при их небольшом количестве, а по мере роста числа вычислительных ячеек распространение информации между ними будет носить все более линейный характер. Это накладывает серьезные ограничение на пиковую скорость квантовых компьютеров и их масштабирование.

РИА Новости http://ria.ru/science/20150413/10582618 … z3XH5o17uY

Отредактировано dilettant (2015-04-14 12:47:37)

0

28

Игры в кубиты

http://icdn.lenta.ru/images/2015/05/26/18/20150526183639880/detail_5faf72ecacc9aed697b220fa59cfe31c.jpg
Фото: D-Wave Systems Inc.

О создании сверхпроводящего кубита, логической ячейки квантового компьютера, 21 мая объявила группа исследовательских институтов России, включающая в себя Российский квантовый центр (РКЦ), Московский физико-технический институт (МФТИ при участии Технологического центра), национальный университет МИСиС, Институт физики твердого тела РАН (ИФТТ РАН) и другие организации. Ранее они работали с элементами, созданными в Германии.

Сразу оговоримся, что в России давно ведутся исследования различных физических систем, которые можно использовать в качестве кубитов: квантовые точки, азот-вакансии в алмазах, холодные нейтральные атомы и другие системы. Достижение, о котором идет речь, — создание именно сверхпроводящего кубита, а также готовность перейти от исследования физических эффектов в квантовых системах к практической реализации квантового компьютера.

http://icdn.lenta.ru/images/2015/05/26/18/20150526182650955/pic_26f896aad689789ed2bb18e05159832a.jpg

Установка, на которой российским ученым впервые удалось измерить кубит на базе сверхпроводящего элемента
Фото: Ivan Khrapach / RQC, MIPT, MIS&S, Institute of Solid State Physics
Секреты счета

Символично, что в этом году исполняется полвека закону Мура о скорости уменьшения размера транзисторов. Транзисторы — основные элементы полупроводниковой электроники, из которых с 1950-х годов изготавливают компьютеры и другие электронные устройства. С уменьшением размера транзисторов можно все больше размещать их на чипе (интегральной схеме), и производительность компьютеров растет.

В классическом компьютере информация представлена в двоичном виде: число 0 записывается как 0, 1 — как 1, число 2 будет представлено уже последовательностью двух битов «10». В двоичной системе единицей информации является бит, который может принимать значение 1 или 0. Физически это можно реализовать, используя переключатель (триггер), у которого два положения, каждому из которых мы приписываем значения 0 и 1.

Над двоичными числами можно производить все математические операции. Например, сложение 1 и 1 даст 10 в двоичном виде, что как раз равно 2 в привычной нам десятичной системе. Двоичная запись кажется нам экзотикой, но создать машину, переключающую пять триггеров в одно из двух положений гораздо проще, чем один в десять позиций. Из таких переключателей собираются процессор, память и контроллеры в электронном устройстве.

Чем больше переключателей, тем более функциональную схему можно сделать. Чем меньше триггер, тем быстрее его переключить. Транзисторы, объединенные в большие интегральные схемы, оказались идеальными вместилищами битов. Их можно переключать со скоростью несколько миллиардов раз в секунду, а уменьшение их размеров позволяло увеличивать рабочую частоту процессоров и памяти, повышая их функциональность.

Однако размеры современных транзисторов уже настолько малы, что производительность не удается существенно поднять из-за нежелательных квантовых эффектов. Квантовые компьютеры способны кардинально изменить ситуацию.

Проквантованный бит

Впервые вопрос о том, сколько информации можно записать в состояние квантовой системы, был поставлен советским математиком Александром Холево в 1973 году. В 1980 году другой советский математик, Юрий Манин, в своей книге «Вычислимое и невычислимое» предложил идею «квантового автомата», позволяющего моделировать физические процессы в сложных системах, например, репликацию молекулы ДНК. Но настоящую популярность идея квантового компьютера обрела, когда на нее обратил внимание блестящий физик и популяризатор науки, нобелевский лауреат Ричард Фейнман. Ему и принадлежит сам термин «квантовый компьютер».

Минимальную единицу информации в таком компьютере назвали кубит. Реализовать его можно разными способами, но главное, что благодаря законам квантовой физики он может находиться сразу в двух состояниях 0 и 1 — это так называемый квантовый параллелизм. Даже правильнее говорить о суперпозиции состояний, где 0 и 1 сочетаются в разных пропорциях. Над такой ячейкой также можно совершать операции. При увеличении количества кубитов в процессоре квантового компьютера его мощность растет быстрее, чем при добавлении разрядов в классическом чипе. Ведь вместо двух битов в квантовом компьютере действия будут проводиться над суперпозицией уже четырех состояний 00, 01, 10 и 11.

В результате квантовый компьютер сулит для некоторых задач гораздо большую вычислительную мощность. Правда, для этого инженеры должны создать идеальные условия, чтобы точно провести операции и не позволить разрушиться квантовому состоянию до того, как получен ответ. Собственно, над этой сложной задачей и бьются сейчас ученые.

Если вы думаете, что большая мощность вам ни к чему, то вы ошибаетесь. Такие разговоры пользователи ведут уже лет двадцать, но именно быстрые процессоры позволили заменить сначала огромные серверы домашними компьютерами, а потом сделать смартфоны массовыми.

Военные ждут квантовых компьютеров, чтобы расшифровать секретные коды потенциальных противников. Современные протоколы шифрования рассчитаны на то, что разложение большого числа на простые множители (факторизация) займет миллионы лет — на нынешних суперкомпьютерах. Но для квантового компьютера это перестанет быть проблемой, коды будут раскрыты.

Фальстарт канадцев

Квантовые вычисления еще находятся на начальном этапе, однако в прошлом году мы уже ощутили, что квантовый компьютер становится зримым. В сентябре компания Google наняла физика Джона Мартини и его команду из Университета Калифорнии для разработки чипа, использующего квантовые вычисления. Другая новость пришла из Университета Женевы — специалистам удалось телепортировать квантовое состояние фотона в кристалл, который находился на расстоянии 25 километров от точки эксперимента.

Большое внимание сегодня привлекают и сверхпроводящие кубиты, вариант которых удалось реализовать российским ученым. Они используются в компьютере D-Wave. В этом устройстве действительно наблюдаются квантовые эффекты — некоторые кубиты оказываются в перепутанных состояниях, что подтвердила публикация в респектабельном научном журнале Physical Review X в 2014 году. Но, как выяснилось, для решаемых на этом компьютере задач квантовая механика пока не дала никаких вычислительных преимуществ.

Хотя само по себе это еще ничего не говорит о дальнейших перспективах D-Wave, его архитектура из 512 кубитов позволяет реализовать единственный алгоритм — так называемый «квантовый отжиг», позволяющий решать некоторые задачи оптимизации, сводящиеся к поиску глобального минимума. Универсальные квантовые вычисления реализовать намного труднее. Так что паниковать секретным службам еще рано.

Создание квантового компьютера — исключительно сложная и интересная задача с точки зрения современной физики. Нужно создать квантовую систему, состоящую из большого количества отдельных частиц, научиться воздействовать на квантовое состояние каждой частицы, и сделать так, чтобы состояние всей квантовой системы не разрушалось. В 1995 году Давид ДиВинченцо сформулировал критерии, которым должна соответствовать квантовая система, чтобы быть пригодной для вычислений. Она должна представлять собой массив квантовых объектов с возможностью добавления новых элементов (масштабируемость), квантовое состояние этой системы не должно быстро разрушаться, нужно уметь приводить систему в определенное начальное состояние (инициализация), выполнять логические операции над отдельными кубитами и парами кубитов (универсальные операции) и надежно измерять конечное квантовое состояние системы. Теперь физики стремятся создать систему, наилучшим образом соответствующую этим критериям.

Элементная база нового поколения
В качестве кубитов можно использовать практически любую квантовую систему, за исключением, наверное, элементарных частиц в ускорителях. Важно научиться контролировать квантовое состояние отдельных систем, не давать окружающей среде нарушить его. Интересно, что в последние десятилетия физика шла к решению этой задачи, не ориентируясь на квантовый компьютер, — это было просто интересно ученым. И в 2012 году за успехи в реализации методов управления состояниями индивидуальных квантовых систем была присуждена Нобелевская премия по физике французу Сержу Арошу, экспериментировавшему с нейтральными атомами в резонаторах, и американцу Дэвид Вайнленду, работавшему с ионами.

Применительно к вычислениям практически каждая квантовая система обладает своими преимуществами и недостатками. Понятно, что с точки зрения практического применения интересны твердотельные системы, например, квантовые точки, или азотные вакансии в алмазе, но защитить состояние квантового объекта от разрушения в твердом теле особенно трудно.

http://icdn.lenta.ru/images/2015/05/26/18/20150526183829160/pic_36f8b5056b38ed59d351227ad22b90ad.jpg

Процессор первого коммерческого квантового вычислителя D-Wave Two
Фото: D-Wave Systems Inc.
Можно кодировать информацию в состояниях поляризации отдельных квантов света, которые хорошо зарекомендовали себя в системах квантовой криптографии, но пока не очень приспособлены для квантовых вычислений. Наконец, можно использовать гибридные системы, объединяющие преимущества нескольких подходов. Универсальные квантовые вычисления могут быть реализованы и с помощью необычной архитектуры однонаправленных квантовых вычислений, когда программа кодируется в геометрии квантового регистра, а вычисление производится посредством последовательных разрушающих изменений состояний отдельных кубитов.

Особое внимание уделяется ультрахолодным нейтральным атомам, которые соответствуют практически всем критериям ДиВинченцо. В США в Университете Висконсин-Мадисон группа профессора Саффмана в 2010 году продемонстрировала выполнение самых сложных двухкубитовых логических операций с парой атомов, захваченных в оптические пинцеты. Сейчас эта группа создала квадратный массив из 49 оптических дипольных ловушек, образующихся в фокусах лазерных пучков. В каждой ловушке захватывается один атом, затем квантовое состояние атома контролируется с помощью резонансного лазерного излучения, вызывающего переходы между логическими состояниями кубитов.

http://icdn.lenta.ru/images/2015/05/26/18/20150526182122040/pic_35f6d92437f352e5568188a414122d43.jpg
Научная установка для квантовых вычислений на 49 кубитах в университете Висконсин-Мадисон (США)
Фото: НГУ
В отличие от D-Wave, здесь речь идет об экспериментальной установке, пока не слишком удобной для практического применения, но зато свободной от принципиальных ограничений, присущих D-Wave. Чтобы воспользоваться преимуществами универсальных квантовых вычислений, нужно научиться бороться с ошибками.

Сейчас группа Саффмана занимается повышением точности логических операций, которая в 2014 году достигла 99,8 процентов для однокубитовых операций. Теперь предстоит добиться высокой точности и для двухкубитовых операций, и здесь можно ожидать успехов уже в этом году. Этот путь намного более долгий и сложный, чем в проекте D-Wave, зато и ожидаемый результат гораздо значимее.

Отечественный вклад

В России квантовым вычислениям уделяется большое внимание, поскольку математика и квантовая физика — традиционно сильные стороны отечественной науки. Локомотивом экспериментальной реализации квантовых вычислений в России был создатель многих советских компьютеров, директор Физико-технологического института РАН академик Камиль Валиев, автор известной книги «Квантовые компьютеры и квантовые вычисления». Так что не удивительно, что МФТИ принимал участие в создании первого сверхпроводящего кубита в России.

Однако, сверхпроводники — не единственное направление, в котором действуют российские разработчики кубитов. В Институте физики полупроводников (ИФП) им. А.В. Ржанова СО РАН в Новосибирске занимаются и квантовыми точками, и азотными вакансиями в алмазе, и ультрахолодными нейтральными атомами. В институте есть единственная в России экспериментальная установка, где реализовано лазерное охлаждение и возбуждение отдельных атомов в такие состояния, когда эти атомы начинают очень сильно друг с другом взаимодействовать. Это нужно для выполнения двухкубитовых логических операций. Экспериментальная установка состоит из вакуумной камеры с парами рубидия, полупроводниковых и твердотельных лазеров для охлаждения и возбуждения атомов, а также системы регистрации квантовых состояний, чувствительной к отдельным атомам.

Группа сотрудников ИФП под руководством доктора физико-математических наук Игоря Рябцева впервые в мире продемонстрировала резонансное диполь-дипольное взаимодействие двух отдельных атомов и показала, что можно управлять им с помощью радиочастотного электрического поля. Предполагается, что уже в ближайшее время это позволит наблюдать эффект блокады, важный для двухкубитовых операций. Теоретические работы группы, в которую входит один из соавторов данной статьи к.ф.-м.н. Илья Бетеров, направлены на близкие задачи — повышение точности захвата отдельных атомов в оптические дипольные ловушки, а также разработка оригинальных схем квантовых вычислений, где в качестве кубита используется не один атом, а атомный ансамбль. Этими работами российская группа занимается в тесной кооперации с американскими и британскими коллегами.

Разнообразие конкурирующих подходов к созданию квантового компьютера способствует успешному решению этой научной проблемы. Вполне возможно, что в будущем конкретная физическая реализация будет выбираться в зависимости от назначения квантового компьютера и особенностей решаемых на нем задач.

Квантовая неопределенность

Самый актуальный вопрос на сегодня — когда миру будет представлен первый квантовый компьютер? С одной стороны, на уровне демонстрации принципов квантовые вычисления уже реализованы — в 2012 году алгоритм Шора позволил факторизовать число 21, а адиабатический алгоритм был использован для разложения числа 143 на простые множители. С другой — создание квантового компьютера, способного превзойти современные суперкомпьютеры для решения практических задач, все еще представляется делом достаточно далекого будущего.

Считается, что нам нужно 1000 кубитов, чтобы мощность квантового компьютера была значительно больше, чем у классического. Компания D-Wave показала, что частной компании по силам сделать в короткий срок вычислительное устройство, содержащее квантовые биты, хотя полноценным квантовым компьютером оно не является.

Зачем России гонка квантовых вычислений

Проблему квантовых вычислений иногда сравнивают по сложности с разработкой атомной бомбы. Вопрос о том, возможен ли практически применимый квантовый компьютер по сей день остается открытым. Тем не менее можно оценивать темпы нашей работы.

В США уже в 2009 году были продемонстрированы первые двухкубитовые логические операции с двумя нейтральными холодными атомами. Сейчас группа из Университета Висконсин-Мадисон работает с 49 кубитами, и это большой рывок вперед. Если с таким массивом удастся получить приемлемые результаты в плане точности вычислений, то можно надеяться, что дальнейшее масштабирование будет уже не столь серьезной проблемой. Вместе с тем инвестиции в данную тематику в США несопоставимы с российскими и превышают их на порядки. Поэтому отечественные исследователи предпочитают работать в кооперации с зарубежными — это позволяет внести свой вклад в развитие данной области и одновременно держать руку на пульсе, чтобы при необходимости пойти уже по известному правильному пути.

Экспериментальная установка в ИФП СО РАН, несмотря на свою относительную простоту, позволяет детально исследовать физические эффекты, которые применяются в Мадисоне для реализации квантовых вычислений. Теоретические результаты российской группы тоже представляют значительный интерес для американцев. В то же время экспериментальные методы и теоретические расчеты американской группы активно используются специалистами из ИФП. С учетом высокой стоимости экспериментальных исследований такая кооперация исключительно эффективна. Хотя финансирования российской группе, конечно же, не хватает.

Не случайно DARPA и Google купили квантовый вычислитель (именно так называются аппараты, реализующие только один квантовый алгоритм вычислений) D-Wave — возможно, он не принесет практической пользы, но даст опыт обращения с подобными системами. Пока за состоянием дел в сфере квантовых вычислений еще можно следить по открытым публикациям в научных журналах и при личном общении со специалистами. Если же квантовые компьютеры приблизятся к практической реализации, и тематика станет «закрываться», то благодаря наличию в России действующих научных групп в данной области, можно будет определить приоритетное направление и, сделав значительные, но не чрезмерные инвестиции, наверстать отставание. Для этого понадобятся кадры. Их можно будет найти как раз в научных группах, занимающихся проблематикой квантовых вычислений. Например, соавтор статьи кандидат физико-математических наук Илья Бетеров преподает в Новосибирском государственном университете и Новосибирском государственном техническом университете и рассчитывает вырастить из студентов специалистов по компьютерам нового типа.

Илья Бетеров кандидат физико-математических наук, старший научный сотрудник Института физики полупроводников СО РАН, доцент НГУ и НГТУ, рецензент журналов Американского физического общества Physical Review Letters и Physical Review A

Александр Баулин

Ссылка

+1

29

Классический компьютер сымитировал работу квантовой машины

Квантовые компьютеры по своей природе отличаются от классических машин, поскольку их работа подразумевает проявление квантовых эффектов, таких как суперпозиция или запутанность. Тем не менее результаты нового исследования физиков из Техасского университета в Остине показали, что классический компьютер способен к эмуляции работы квантовой вычислительной машины.
В своей статье, опубликованной в издании New Journal of Physics, учёные рассказывают об эксперименте и утверждают, что подражание аналоговой системы было практически неотличимо от работы настоящего квантового компьютера.
Ведущий автор нового исследования Брайан Ла Кур (Brian La Cour) сообщает, что работа его команды может иметь важное практическое применение. Если работа аналоговой системы практически неотличима от действий настоящего квантового компьютера, то в некоторых случаях будет иметь смысл использовать именно его в силу определённых преимуществ.
Дело в том, что в отличие от настоящих квантовых компьютеров симулирующие их действия классические машины гораздо меньше подвержены так называемой декогеренции — необратимого процесса нарушения связей в квантовой системе (вследствие её взаимодействий с окружающей средой).
"Полученные нами результаты помогут развивать новые захватывающие технологии как в классическом аналоговом вычислении, так и в самих квантовых вычислениях", — утверждает Ла Кур.
Как рассказывают авторы исследования, попытки сымитировать работу квантового компьютера с помощью программного обеспечения на классическом компьютере предпринимались и ранее. Однако прежние работы были всего лишь численными представлениями операций квантовой компьютера.

Теперь же учёные запустили процесс, который включает в себя физическое представление структуры кубита и отображение его фактического квантового поведения. Одно из ключевых таких квантовых поведений, которому может подражать классическая система, это параллелизм. Это явление позволяет выполнять одновременно несколько операций на имеющихся данных и в квантовых вычислительных машинах является следствием из феноменов суперпозиции и запутанности. Именно это позволяет квантовым компьютерам работать со столь высокой скоростью.
В эксперименте Ла Кур и его коллеги использовали электронные сигналы для эмуляции кубитов: состояние квантового бита представляли амплитуды и частоты сигналов в соответствии со сложными математическими формулами. Физики также объяснили, что хотя они и использовали в своём опыте электронные импульсы, по сути, то же самое могут выполнять и любые другие виды сигнала, например, акустические или электромагнитные волны.
"Важно отметить, что, несмотря на схожесть работы, система, задействованная в эксперименте, по-прежнему является классической, а не квантовой", — поясняет Ла Кур.
Учёные рассказывают, что суперпозиция является свойством волны, которое проявляется во многих классических системах, в том числе и в той, что была испытана в их эксперименте. Что же касается квантовой запутанности, то она представляет собой сугубо математическое свойство волны, и так как электрические сигналы в эксперименте описываются теми же законами математики, что и истинная квантовая система, они могут проявлять те же самые свойства.
"Наблюдаемая в нашем эксперименте запутанность не нарушает неравенства Белла, которое часто используется для проверки этого явления", — добавил Ла Кур.
В своей статье учёные также описывают, как с использованием аналоговых электронных компонентов можно построить эмулятор квантового компьютера. Для этого, по словам исследователей, необходимо уместить как можно большее число компонентов на одной микросхеме для того, чтобы представлять максимально возможное количество кубитов.
Учитывая, что лучшие современные полупроводниковые технологии позволяют уместить более миллиарда транзисторов на интегральной схеме, учёные подсчитали, что эта плотность транзисторов соответствует примерно 30 кубитам. Увеличение плотности транзистора в 1000 раз, которое, в соответствии с законом Мура, может быть достигнуто в ближайшие 20-30 лет, будет соответствовать 40 кубитам.
Этот 40-кубитный лимит также обусловлен ещё одним фундаментальным ограничением, которое возникает из ширины полосы сигнала. Учёные подсчитали, что длительность сигнала в 10 секунд может вместить 40 кубитов, при этом увеличение этого показателя до 10 часов будет соответствовать 50 кубитам, а до года — 60 кубитам. Любопытно, что если длительность сигнала составит 13,77 миллиарда лет (приблизительный возраст Вселенной), то он сможет вместить всего 95 кубитов. Но если сигнал будет длиться период времени планковского масштаба (около 10 в минус 43-ей степени секунд), то он будет соответствовать целым 176 кубитам.
Поскольку для выполнения некоторых важнейших задач на квантовых компьютерах, таких как шифрование, требуются тысяч кубитов, эта схема, несомненно, сталкивается с непреодолимыми ограничениями.
Тем не менее предельных 40 кубитов может хватить на некоторые приложения, к примеру, на квантовое моделирование. А поскольку такая машина имеет неоспоримые преимущества перед настоящими квантовыми компьютерами, однажды они могут быть очень полезны. Осталось только сконструировать рабочую модель.

Ссылка

0

30

Рано, рано списывать со счетов транзисторных "динозавров"!

0


Вы здесь » Астрофорум » Прочее » Запутанные во времени фотоны